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Abstract—A novel state-variable model for semiconductor
optical amplifiers (SOAs) that is amenable to block diagram
implementation of wavelength division multiplexed (WDM) sig-
nals and fast execution times is presented. The novel model
is called the reservoir model, in analogy with similar block-
oriented models for Raman and erbium-doped fiber amplifiers
(EDFAs). A procedure is proposed to extract the needed reservoir
model parameters from the parameters of a detailed and accurate
space-resolved SOA model due to Connelly, which was extended
to cope with the time-resolved gain transient analysis. Several
variations of the reservoir model are considered with increasing
complexity, which allow the accurate inclusion of scattering losses
and gain saturation induced by amplified spontaneous emission.
It is shown that at comparable accuracy, the reservoir model
can be 20 times faster than the Connelly model in single-channel
operation; much more significant time savings are expected for
WDM operation. The model neglects intraband SOA phenomena
and is thus limited to modulation rates per channel not exceeding
10 Gb/s. The SOA reservoir model provides a unique tool with
reasonably short computation times for a reliable analysis of gain
transients in WDM optical networks with complex topologies.

Index Terms—Optical pulse amplification, semiconductor
optical amplifier (SOA).

I. INTRODUCTION

S EMICONDUCTOR optical amplifiers (SOAs) are becom-
ing key devices for future optical networks. SOAs are used

in a wealth of applications to achieve highly varied functions.
For example, optical switching and wavelength conversion
can be accomplished using cross-gain modulation (XGM),
four-wave mixing (FWM), or cross-phase modulation (XPM)
[1]–[3]. Signal reshaping and noise cleaning of ON–OFF keying
(OOK) signals are also feasible using saturated SOAs [4],
with particularly effective application in spectrum sliced
wavelength-division multiplexing (WDM) [5] and incoherent
optical code-division multiple access [6].
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In this paper, we are interested in analyzing the response
of SOAs to optical signals that are modulated at bit rates not
exceeding 10 Gb/s, such as those planned for next-generation
metropolitan area networks. Therefore, ultrafast intraband phe-
nomena such as carrier heating (CH) and spectral hole burning
(SHB) (see, e.g., [7]–[9]) can be neglected, and only carrier-
induced gain dynamics need to be included, as was done
in several SOA models developed in the past. Such models
can be divided into two broad categories: 1) space-resolved
numerically intensive models, which take into account facet re-
flectivity as well as forward and backward propagating signals
and amplified spontaneous emission (ASE) and offer a good
fit to experimental data [10]–[12], and 2) simplified analytical
models with a coarser fit to experimental data but developed to
facilitate conceptual understanding and performance analysis
[2], [13]–[16]. For the purpose of carrying out extensive Monte
Carlo simulations for statistical signal analysis and bit-error-
rate (BER) estimation, the accurate space-resolved models are
ruled out because of their prohibitively long simulation times.
However, a simplified model with a satisfactory fit to experi-
mental results would be highly desirable. Most simplified mod-
els can be derived from the work of Agrawal and Olsson [13].
Under suitable assumptions, Agrawal and Olsson managed to
reduce the coupled propagation and rate equations into a single
ordinary differential equation (ODE) for the integrated gain
[13, eq. (3.4)]. The simplicity of the solution is due to the fact
that waveguide scattering losses and ASE were neglected. ASE
has an important effect on the spatial distribution of carrier
density and saturation, and it may significantly affect the SOA
steady-state and dynamic responses [17], [18]. Scattering losses
also have an impact on the dynamic response of the SOA [3].
Moreover, Agrawal and Olsson’s model was originally cast for
single-wavelength-channel amplification, although it can be ex-
tended to multiwavelength operation by assuming that the chan-
nels are spaced far enough apart to neglect FWM beating in the
copropagating case [3]. Saleh [14] arrived independently at the
same model as Agrawal and Olsson’s ([14, eq. (4a)] coincides
with [13, eq. (3.4)]) and then introduced further simplifying
approximations to get to a very simple block diagram of the
single-channel SOA, which was exploited for a mathematically
elegant stochastic performance analysis of single-channel sat-
urated SOAs [15]. The loss of accuracy due to Saleh’s extra
approximations with respect to Agrawal’s model was quantified
in [19]. Saleh’s model was later extended to cope with injection
current modulation, scattering losses, and ASE [16]. In addi-
tion, Agrawal’s model was extended to include ASE [20]. In
both [16] and [20], ASE was added phenomenologically at the
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Fig. 1. Block diagram of the reservoir model. ASE contribution not shown for
ease of drawing.

output of the SOA and did not influence the gain dynamics,
thereby limiting the application to very small saturation levels.

In this paper, we first develop a dynamic version of the
steady-state wideband SOA Connelly model [12], which is
shown to fit quite well with our dynamic SOA experiments
with OOK channels. The Connelly model was selected because
it derives the SOA material gain coefficient from quantum
mechanical principles without the assumption of linear de-
pendence on carrier density that was made in [10] and [11].
Our dynamic Connelly model serves then as a benchmark to
test the accuracy and computational-speed improvement of a
novel state-variable SOA dynamic model, which represents the
most important contribution of this paper. The novel model
is an extension of Agrawal’s model, as provided in [3], with
the inclusion of approximations for scattering loss and ASE
to better fit the experimental results and the dynamic Con-
nelly model predictions. In such a model, the SOA dynamic
behavior is reduced to the solution of a single ODE for the
single state variable of the system, which is proportional to
the integrated carrier density [3], which, for WDM operation,
is a more appropriate variable than the integrated gain used in
[13]. Once the state-variable dynamic behavior is found, the
behavior of all the output WDM channels is also obtained. The
state variable is called “reservoir” since it plays the same role
as the reservoir of excited erbium ions in an erbium-doped
fiber amplifier (EDFA) [21], [22]. Quite interestingly, then,
the SOA for WDM operation admits almost the same block
diagram description as that of an EDFA suggested by [21,
eq. (5)]. Such a novel SOA block diagram is shown in Fig. 1
(without ASE for ease of drawing) and will be derived in the
next sections. Note that this model treats the intensity of the
electrical field, but the field phase can be indirectly obtained
since it is a deterministic function of the reservoir [13]. In the
SOA, the role of the optical pump for EDFAs is played by
the injected current I . The most striking difference between
the two kinds of amplifiers is the fluorescence time τ , which
is of the order of milliseconds in EDFAs and of a fraction
of nanosecond in SOAs. Such a huge difference accounts for
most of the disparity in the dynamic behavior between the two
kinds of amplifiers and explains why SOAs have not been used
for WDM applications for a long time [23]. However, recent
cheap gain-clamped SOAs [24] are likely to promote the use of
SOAs for WDM metro applications. As already mentioned, the
reservoir model requires the (copropagating) WDM channels
to have minimum channel spacing in excess of a few tens of

gigahertz, in order to neglect the carrier-induced FWM fields
generated in the SOA. This should not be a problem for chan-
nels allocated on the International Telecommunications Union
grid with 50 GHz spacing or more. However, an intrinsic limit
of the reservoir model is its neglecting SHB and CH, which
generate FWM and XPM interactions among WDM channels
even when the minimum channel spacing is large enough to
rule out any carrier-induced interaction [9]. The predictions
of the reservoir model will be accurate whenever the carrier-
induced XGM mechanism dominates over FWM and XPM. It is
worth mentioning that state-variable amplifier block diagrams
are very important simulation tools that enable the reliable
power propagation of WDM signals in optical networks with
complex topologies; therefore, the present reservoir SOA model
provides a new entry aside from the already known models for
EDFAs [21], [25] and for Raman amplifiers [26]. A challenge
in our reservoir model, as in all simplified SOA models, is
to correctly choose the values of the wavelength-dependent
coefficients that give the best fit to the experimental results. We
propose and describe here a methodology to extract the needed
wavelength-dependent coefficients from the parameters of the
dynamic Connelly model.

This paper is organized as follows. In Section II, the dynamic
Connelly model is introduced, and a procedure to derive its
parameters from experiments is described. In Section III, the
SOA reservoir model is derived first without ASE and then
with ASE that is resolved over a large number of wavelength
bins. Simulations show good accordance between the reservoir
model predictions and experiments, and good improvement in
calculation time with respect to the Connelly model. However,
inclusion of many ASE wavelength channels makes even the
reservoir model too slow for the BER estimations we have
in mind. Hence, in order to further simplify the model, we
introduce the reservoir model with a single equivalent ASE
channel. The ASE can be seen as an independent input-signal
channel (with proper input power and wavelength) that depletes
the reservoir of a noiseless SOA. Results show that this last
model is the most efficient one since it can be made to accu-
rately predict experimental results with an execution time that is
20 times faster than that of the dynamic Connelly model for
single-channel operation, with the savings increasing with the
number of WDM signal channels. In Section III-C, we examine
a model that was obtained by dividing the SOA into several
sections, each characterized by its own reservoir. Here again,
the ASE can be modeled as a single channel that propagates
through the different reservoir stages. Results show better pre-
cision, although the increase in precision is not worth, in most
cases, the loss in execution time. Most of the numerical results
are reported in Section IV. Finally, Section V summarizes the
main findings of this paper.

II. DYNAMIC CONNELLY MODEL

A. Theory

In this paper, we adopt the wideband model for a bulk SOA
proposed in [12], which is based on the numerical solution
of the coupled equations for carrier-density rate and photon-
flux propagation for both the forward and backward signals
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and the spectral components of ASE. At a specified time t
and position z in the SOA, the propagation equation of photon
flux Q±

k [photons/s] of the kth forward (+) or backward (−)
signal is

dQ±
k (z, t)
dz

= {± [Γgk(N) − α(N)]}Q±
k (z, t) (1)

where Γ is the fundamental mode confinement factor, gk is the
material gain coefficient at the optical frequency νk of the kth
signal, α is the material-loss coefficient, and both are functions
of carrier density N(z, t). The power of the propagating signal
is related to its photon flux as P±

k = hνkQ
±
k (in watts), where h

is Planck’s constant. The ASE photon flux on each ASE wave-
length channel obeys a similar propagation equation given by

dQ±
j (z, t)
dz

= ± [Γgj(N) − α(N)]Q±
j (z, t) +Rsp,j(N) (2)

where Rsp,j(N) is the spontaneous emission rate coupled into
the ASE channel at frequency νj . The expression of Rsp,j(N)
is given in [12, eq. (40)]. This expression will be used in
Section III-B to develop a reservoir model equation that takes
ASE into account. The carrier density at coordinate z evolves
as [12]

dN(z, t)
dt

=
I

qdLW
−R (N(z, t))

− Γ
dW

{nsig∑
k=1

gk(N)
(
Q+

k (z, t) +Q−
k (z, t)

)}

− 2Γ
dW




nASE∑
j=1

gj(N)Kj

(
Q+

j (z, t) +Q−
j (z, t)

)
(3)

where I is the bias current; q is the electron charge; d, L, and W
are the active-region thickness, length, and width, respectively,
and R(N) is the recombination rate. An expression for R(N)
is given in [12, eq. (49)]; the reservoir model of Section III uses
a linear approximation for R(N) in (9); nsig is the number of
WDM signals; nASE is the number of spectral components of
the ASE; and Kj is an ASE multiplying factor, which equals
1 for zero facet reflectivity [12]. The factor 2 in (3) accounts
for two ASE polarizations. Note that (3) contains an important
approximation: it is the sum of the signals and ASE powers
(fluxes), instead of—more correctly—the power of the sum
of the signals and ASE fields, that depletes carrier density N .
Therefore, (3) neglects the carrier-density pulsations due to
beating among WDM channels that generate FWM and XPM
in SOAs [9]. Although such an approximation is inappropriate
for extremely dense or high-power WDM channels, it is
accurate for typical wavelength spacings of 0.4 nm or more.

The material gain gk(N) ≡ g(νk, N) is calculated as in
[12, eq. (14)]. Fig. 2 plots the material gain N versus wave-
length λk = c/νk (with c being the speed of light) using the
SOA parameters discussed in the next section.

Fig. 2. Gain coefficient g(λ, N) versus wavelength and carrier density calcu-
lated from ([12, eq. (14)]) with the parameters in Table I.

The time-varying solution of the coupled differential equa-
tions (1)–(3) is based on the assumption that the carrier density
remains constant during a time step and is achieved by first
performing a spatial integration with the carrier density fixed
during each time step, followed by a time integration. Steady-
state solutions are used as an initial condition for the subsequent
time evolution.

We note in closing that the Connelly model also neglects
ultrafast phenomena such as CH and SHB.

B. Parametrization

In order to fit the experimental results that we obtained with a
commercial Optospeed SOA model 1550MRI X1500, we used
the SOA parameters provided in [12, Table I], except for a
subset of different values reported in Table I in this paper; the
most critical of such parameters were determined as follows.

1) The active-region length L was determined by measuring
the frequency spacing between two maxima of the gain
spectrum ripples: L = λ2

0/2nr∆λ, where λ0 is the cen-
tral wavelength (1550 nm), nr is the average semicon-
ductor refractive index, and ∆λ is the ripple wavelength
spacing.

2) The bandgap energy Eg0 was set so that the experimental
cutoff wavelength of the gain spectrum (which was about
1605 nm) matched the simulated one.

3) The parameters of the carrier-dependent material-loss
coefficient [12], i.e.,

α (N(z)) = K0 + ΓK1N (4)

were chosen so that the maximum simulated gain
matched the measured one.

4) The active-region thickness and width were set so as to
match the experimental and simulated curves of gain as a
function of the injection current.
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TABLE I
VALUES OF PARAMETERS USED IN THE CONNELLY MODEL, WHICH DIFFER FROM THOSE IN [12]

Fig. 3. Fiber to fiber unsaturated gain versus wavelength. Measured (dashed)
and simulation (solid) results using Connelly model.

5) The bandgap shrinkage coefficient Kg was set so that
the peak gain wavelength equals the measured value of
1560 nm at an injection current of 500 mA.

The aforementioned SOA parameter values were used in all
simulations hereafter.

C. Simulations With Connelly Model

We present simulation results obtained with the Connelly
model and compare them against experimental measurements.
The experiment consisted in amplifying a tunable continuous
wave (CW) laser whose wavelength was varied around the
Optospeed SOA peak gain wavelength. Laser polarization was
controlled so as to obtain maximum gain.
1) Unsaturated Gain Spectrum: Fig. 3 shows the simulated

and measured unsaturated gain spectra at a signal input power
of −30 dBm and an injection current of 500 mA.

A good match between the simulations and experiments was
obtained when using the values of Table I. In the ensuing

Fig. 4. Fiber to fiber gain versus input optical power. Measured (dashed) and
Connelly model (solid).

experiments and simulations, the input signal will be fixed at
the gain peak wavelength of 1560 nm.
2) Gain Saturation: Fig. 4 shows the fiber-to-fiber gain as a

function of the input power. The wavelength of the input laser
was 1560 nm, and the injection current was 500 mA.
3) Dynamic Response: The experimental setup is depicted

in Fig. 5. The input laser at 1560 nm was externally modulated
at 1 Gb/s. The laser power was varied from −25 to −10 dBm
in steps of 5 dB. The measured photoreceiver responsivity was
400 mV/mW. The injection current was 500 mA. Since we are
interested in testing the action of the SOA on the propagating
signal power in this paper, no optical filter was inserted before
detection.1

1The phase response of optical filters can vary nonlinearly with frequency.
Signals not precisely centered in the filter passband have the chirp acquired
within the SOA transformed into an undesired amplitude modulation, leading
to unpredictable pulse shapes that mask the SOA gain dynamics.
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Fig. 5. Experimental setup used to measure the amplified dynamic response.

Fig. 6. Response to square wave input (see inset representing optical input
power in dBm). Measured (dashed) and dynamic Connelly model (solid).

The measured experimental input pulses to the SOA were
replicated in the simulator. The length of the input-signal time
series was 1350 points over a 2-ns time window. In Fig. 6,
we plot the experimental and the simulated output pulses at
an input power of −18 dBm. At this power level, the SOA
is not heavily saturated by the signal; thus, the ASE-induced
saturation significantly contributes to the dynamic response.
Fig. 6 demonstrates that the dynamic Connelly model is also
able to accurately predict the amplified output pulse shape.
Similar results were also obtained for many different input
powers and signal wavelengths.
4) Computation Time: The major drawback of the Connelly

model is its long execution time. Our Matlab code, which was
run on a 3-GHz Intel processor, took about 12 s to calculate
an output bit resolved over 1350 points. Similar calculations
for a time series of 50 000 points (37 bits) took about 432 s.
This presents a major limitation when typical Monte Carlo BER
estimations are sought, which require transmission of millions
of bits. A drastic simplification of the gain dynamics calculation
is required in order to significantly decrease execution time.
Reduced computation time and the facility of analysis motivate
our introduction of the reservoir model.

III. RESERVOIR MODEL

We now derive the reservoir model for a traveling-wave
SOA (zero facet reflectivity) fed by WDM signals. For k =

1, . . . , nsig, the propagation and carrier density update (1) and
(3) become

dQk(z, t)
dz

= {[Γgk(N) − α(N)]}Qk(z, t)uk

dN(z, t)
dt

=
I

qV
−R(N) − Γ

A

nsig∑
k=1

gk(N)Qk(z, t)

− 4
Γ
A

nASE∑
j=1

gj(N)QASE
j (z, t) (5)

where A and V = AL are the active waveguide area and vol-
ume, respectively, and we introduced the propagation direction
variable uk, which equals +1 for forward signals and −1 for
backward signals. In (5), 2 ·QASE

j stands for an equivalent ASE
flux that accounts for the impact of both forward and backward
ASE on the carrier-density update equation.

The formal solution of the propagation equation is obtained
by multiplying both sides by uk, dividing them by Qk, integrat-
ing both sides in dz from z = 0 to z = L for each k, and ob-
tain an equivalent equation of the form Qout

k = Qin
k Gk, where

the gain

Gk = e

∫ L

0
(Γgk(N)−α(N))dz (6)

is independent of the signal propagation direction. For conve-
nience, we will let

Γgnet
k (N)

�
= Γgk(N) − α(N) (7)

denote the net gain coefficient per unit length in the SOA. Now,
define the SOA reservoir as

r(t) = A

L∫
0

N(z, t)dz (8)

which physically represents the total number of carriers in the
SOA that are available for conversion into signal photons by
the stimulated emission process. If one approximates both the
recombination rate and the material gain as linear functions of
N [13], i.e.,

R(N) ∼=N/τ

gk(N) ∼=σk(N −N0k) (9)

where τ is the fluorescence time and σk[m2] and N0k[m−3]
are wavelength-dependent fitting coefficients, then one obtains
from (4) and (6)

Gk = exp


 L∫

0

Γgnet
k (N)dz


 = exp[ak (r(t) − r0k)] (10)

where

ak = Γ(σk −K1)/A

r0k = (ΓσkN0k +K0)L/ak (11)
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are two dimensionless parameters. In addition, one can multiply
both sides of the second equation in (5) by A and integrate in
dz to obtain

dr(t)
dt

=
I

q
− r(t)

τ
−

nsig∑
k=1

L∫
0

Γgk (N(z))Qk(z) dz

− 4
nASE∑
j=1

L∫
0

Γgj (N(z))QASE
j (z) dz. (12)

For the time being, the contribution of ASE will be neglected.
It will be tackled in Section III-B. Now, integrating in dz both
sides of the first equation in (5) gives

L∫
0

Γgk(N)Qk dz =
(
Qout

k −Qin
k

)
+

L∫
0

α(N)Qk dz. (13)

The Appendix discusses the approximation involved in drop-
ping the second term on the right-hand side of (13), which
physically represents the signal photons lost through scattering
within the SOA. If such a scattering loss term can be dropped,
then substituting in (12), one gets the “reservoir dynamic equa-
tion” given by

dr(t)
dt

=
I

q
− r(t)

τ
−

nsig∑
k=1

Qin
k

(
eak(r(t)−r0k) − 1

)
(14)

where gain Gk (10) takes the scattering losses into account.
Since the scattering loss term is positive, the reservoir result-
ing from (14) is an overestimation of the actual reservoir, as
quantified in the Appendix.

Note that the reservoir dynamic equation is quite similar to
the EDFA reservoir equation [21] and, together with gain (10),
builds the block diagram shown in Fig. 1.

As discussed in [13], one can easily show that once reservoir
r(t) is known, the cumulated phase of the kth propagating
signal at the output of the SOA can be obtained as

φout
k (t) = −1

2
αH

Γσk

A
(r(t) −N0kV ) (15)

where αH is the “linewidth enhancement factor.” Therefore,
it is possible to correctly take into account chirp-related dis-
tortions that are induced by dispersive optical components that
follow the SOA.

A. Extraction of Reservoir Parameters From Connelly Model

We next explain how to extract the fitting parameters of the
gain linearization in (9) from the Connelly gain g(λ,N), whose
plot versus wavelength and carrier density was already given in
Fig. 2 for our Optospeed SOA. A plot of gnet

k (λ,N) would have
a similar form; in particular, a rigid shift downward would result
if K1 = 0, i.e., if α did not depend on N .

Fig. 7 gives a slice of the surface in Fig. 2 at a wavelength of
1560 nm, which was plotted over a wide range of carrier density
N . As shown, a linear approximation of the gain coefficient is
well justified especially as the physically achievable range of

Fig. 7. Connelly gain coefficient g (dashed) and net gain coefficient gnet in
(7) (solid) versus carrier density N for λ = 1560 nm. SOA parameters as in
Table I. Dotted is the linear approximation used in the reservoir model.

carrier densities is much smaller than the range shown. Our task
is now to provide good estimates of the wavelength-dependent
coefficients σk and N0k in (9).

First, we identify the achievable range of N over which we
will restrict our linear fit. To this aim, using the steady-state
Connelly model, we calculated the maximum and minimum
values of the “average carrier density,” i.e.,

N
�
=

1
L

L∫
0

N(z) dz =
r

V
(16)

which were obtained for the extreme cases of a single input sig-
nal at very low (−40 dBm) and very high (0 dBm) input power
at 1560 nm. These extremes cover the small-signal regime
and saturation at an injection current of 500 mA. Equation (5)
without ASE was used to find N(z) at steady state (dN/dt =
0) for a small signal and saturation at λk. The carrier density
was integrated across z to give the extreme values Nmax,k and
Nmin,k, which are depicted in Fig. 7. The process was repeated
at each wavelength from 1450 to 1600 nm in intervals of
5 nm. The parameters of the gain coefficient linear fit were then
extracted from the extreme values as follows:

σk =
gmax,k − gmin,k

Nmax,k −Nmin,k
, N0,k = Nmax,k − gmax,k

σk
(17)

where gmax,k
�
= g(λk, Nmax,k) and gmin,k is similarly defined.

In Fig. 8, we provide the wavelength dependence of the ex-
tracted fitting parameters σk and N0,k for our Optospeed SOA.

Once the linearized gain parameters are calculated, we can
investigate the steady state and the dynamic behavior predicted
by the reservoir model and, as explained in the Appendix,
look for the value of τ that best fits the steady-state and
dynamic experimental curves. However, before doing so, the
fundamental role of spontaneous emission in the rate equation
must be properly accounted for.
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Fig. 8. Coefficients σk (squares solid) and N0,k (triangle solid) of the
linearization of the gain coefficient g versus wavelength for our Optospeed
SOA. Also shown are the coefficients γk and N1,k of the linearization of the
emission gain coefficient g′ (see Section III-B).

B. Including ASE

We now take into account the ASE-induced saturation term
in (5) that was neglected in the previous section. The ASE flux
at z is obtained by solving the propagation (2) with zero initial
condition [27]:

QASE
j (z) = Gj(z)

z∫
0

Rsp,j (N(s))
Gj(s)

ds (18)

where Gj(z) = exp[
∫ z

0 Γgnet
j (N(z′))dz′] is the gain from 0

to z. If, for this calculation, we assume that the carrier density is
constant along z at the average carrier density N = r/V , then
the preceding equation simplifies to

QASE
j (z) ∼= Rsp,j(N)

Γgnet
j (N)

(
eΓgnet

j (N)z − 1
)
. (19)

Such an expression can now be used to evaluate the ASE
integrals neglected in (12) in the previous section, i.e.,

L∫
0

Γgj(N)QASE
j (z) dz ∼= gj(N)

gnet
j (N)

· Rsp,j(N)
Γgnet

j (N)

· (G(r) − 1 − lnG(r)) (20)

where G(r) = exp{Γgnet
j (N)L} is the gain and is a function of

the reservoir only. Note that the fraction gj/g
net
j on the right-

hand side of (20) also appeared in the treatment of the signals
in the Appendix. It approaches one when the scattering-loss
coefficient is small compared with the gain coefficient, and in
the following, it will be considered equal to one in the same
way we dealt with the signals in the previous section.

The fraction in (19) represents the spontaneous emission
factor nsp,j at the jth wavelength of the SOA multiplied by
the resolution bandwidth of the ASE channels ∆νASE. Con-
nelly [12, eq. (40)] points out that Rsp,j(N) = Γg′j(N)∆νASE,
where g′j > gj is the emission gain coefficient [12, eq. (16)],

which may significantly differ from the gain coefficient gj

at shorter wavelengths. If we linearize g′j(N) ∼= γj(N −N1j)
and use the linearization (9) of gj , then we get

nsp,j =
Rsp,j(N)/∆νASE

Γgnet
j (N)

∼= Γγj(r − r1j)
Aaj(r − r0j)

(21)

where r1j
�
= N1jV . As a dimensional check, γj and A are

measured in [m2], while aj is dimensionless so as to correctly
obtain a dimensionless nsp,j .

Fig. 8 also shows the values of the wavelength-dependent
coefficients γj and N1j in the linearization of g′, which were
obtained using exactly the same procedure that yields the
linearization coefficients of g detailed in Section III-A.

Finally, using (12), (20), and (21), the reservoir dynamic
equation including ASE becomes

dr(t)
dt

=
I

q
− r(t)

τ
−

nsig∑
k=1

Qin
k

(
eak(r(t)−r0k) − 1

)

− 4∆νASE

nASE∑
j=1

nsp,j(r) (Gj(r) − 1 − lnGj(r)) . (22)

It is worth noting that a similar equation is found for the case
of EDFAs in [29, eq. (13)]. The received ASE flux QASE

j (L),
finally, is calculated from (19) and (21).

Since this equation still partly neglects some contributions of
the effect of scattering loss, as discussed in the Appendix, we
found it convenient to tune the value of the fluorescence time
τ in the reservoir model so as to best match the dynamic and
static behaviors of the Optospeed SOA used in the experiments.
A value close to τ = 310 ps was found to give an excellent fit
in the cases that we analyzed.

As a first example of the validity of (22), we calculated
both with the Connelly model and with the reservoir model
the total received ASE power when a single nonreturn-to-
zero modulated channel at 1560 nm, with a 0101 modulating
sequence at 1 Gb/s, was fed to the SOA with an input power
of −18 dBm. Fig. 9 shows the total received ASE power as a
function of time for both models, with a satisfactory agreement.
Extensive comparisons will be presented in Section IV.

C. Multistage Reservoir Model

The multistage reservoir model consists of subdividing
the SOA into several cascaded sections or “stages,” each
characterized by its own reservoir (Fig. 10). Let ns be the
number of stages. Then, the reservoir equation for each
stage i is

dri

dt
=
I

q
− ri

τ
−

nsig∑
k=1

Qin
k,i(Gk(ri)−1)−

nASE∑
j=1

QASE,in
j,i (Gj(ri)−1)

− 4∆νASE

nASE∑
j=1

nsp,j(ri) (Gj(ri) − 1 − ln (Gj(ri))) (23)

where ri is the reservoir of the ith stage with length Li = L/ns

and Gk(ri) is its gain given in (10) and (11) (where Li is
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Fig. 9. Variation of the total output ASE power for a square input pulse train
(inset of Fig. 6); simulation results with dynamic Connelly model (solid) and
with reservoir model including ASE (dashed).

Fig. 10. Multistage reservoir model.

used instead of L), and nsp,j is the spontaneous emission factor
in (21). For the signal channels, the flux Qin

k,i+1 input to the
(i+ 1)th stage is the output flux of the ith stage, which is in turn
equal to the ith reservoir gainGk(ri) multiplied by its input flux
Qin

k,i. For the ASE channels, the first-stage input flux is zero.
The output ASE of one stage becomes an input ASE signal to
the next stage, which is accounted for in (23) by the second
summation term. The third summation term is, as usual, the
ASE generated inside stage i. Considering forward ASE only
has the advantage of simplicity, but the approximation brought
into a multistage scenario is evident: Each stage is saturated by
forward ASE from the upstream stages. Modeling the SOA with
multiple stages is similar to the algorithm used in the space-
resolved models, which provide the carrier-density evolution
N(t, zi) at discrete positions zi along the SOA. Hence, the
multistage reservoir model is expected to give similar results
to the Connelly model.

D. Reservoir Model With Single-Channel ASE

Consider the single-stage reservoir model. In order to further
speed up calculations, we now introduce a single fictitious CW-
input ASE channel. Once its wavelength is fixed, the power of
such a CW channel should be chosen so that the time behavior
of reservoir r(t) in a noiseless SOA is as close as possible to
r(t) in the actual SOA that is saturated by signals and ASE.
We call such an input channel the “ASE depleting channel”

TABLE II
SIMULATION TIMES FOR 1350 TIME POINTS FOR A MULTISTAGE

RESERVOIR WITH MULTIPLE ASE OR SINGLE ASE CHANNELS

since the photons used to amplify this channel are lost and not
available to amplify the signal channels.

In this case, the reservoir (22) simplifies as

dr

dt
=

I

q
− r

τ
−

nsig∑
k=1

Qin
k (Gk(r) − 1)−Qin

ASE [GASE(r) − 1]

(24)

where GASE is the gain at the wavelength of the ASE depleting
channel. After arbitrarily fixing the ASE wavelength, we deter-
mined the most appropriate value of Qin

ASE by minimizing the
mean square error in the dynamic step response of the SOA
with respect to the predictions of the Connelly model. The
trick of the ASE depleting channel can also be extended to the
multistage case.

IV. RESULTS

The purpose of this paper is to demonstrate that calculations
using the SOA reservoir model are much faster than the space-
resolved Connelly model and hence, are suitable for Monte
Carlo simulations. We also demonstrate that using the correct
wavelength-dependent parameters, the reservoir model is suffi-
ciently accurate. In this section, we first compare the computa-
tion speed of both models. Then, we assess the accuracy of the
reservoir models that were developed in the previous sections
by comparing gain spectrum, gain saturation, and dynamic
response with the predictions of our experiments.

A. Calculation Speed

We present the calculation times required for different
models, namely, the dynamic Connelly model presented in
Section II, the reservoir model with multiple ASE channels in
Section III-B, and the reservoir model with a single ASE chan-
nel in Section III-D. For the reservoir model, we determined
the computation time for a single-stage SOA, as well as three
multistage SOAs (two, five, and ten stages). The calculation
times in Table II refer to the response to a single input pulse
with a duration of 2 ns that was resolved over 1350 temporal
points. As a reference, the execution time for the Connelly
model was 11.95 s. The calculation times in Table III refer to the
response to a string of multiple pulses with the same time step
as before, for a total of 50 000 temporal points. As a reference,
the execution time for the Connelly model was 432.54 s. In
the Connelly model, we always used a space resolution of
43.33 µm, with the ASE resolved over 30 channels in bins of
2.5 nm each, which were symmetrically arranged around the
gain peak.

As shown, the reservoir model with single-stage ASE is
always the fastest model. The simulation is 20 times faster
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TABLE III
SIMULATION TIMES FOR 50 000 TIME POINTS FOR A MULTISTAGE

RESERVOIR WITH MULTIPLE ASE OR SINGLE ASE CHANNELS

Fig. 11. Fiber to fiber gain spectrum versus wavelength. Measured (dashed)
and simulation (solid) results using the single (squares) and five-stage (circles)
reservoir with 20 ASE channels.

than the Connelly model when a single ASE channel is used.
However, when several reservoir stages are used, the calculation
speed of the single-ASE model becomes of the same order as
that of the multiple-ASE case. In this case, the use of multiple
ASE channels is better for accuracy.

The improvement in computation time in all reservoir models
with respect to the Connelly model is predicted to significantly
increase when increasing the number of propagated WDM
signal channels.

B. Single-Stage Reservoir With ASE

1) Gain Spectrum: Fig. 11 shows both simulated (solid
lines with markers) and experimental fiber-to-fiber (dashed-
dotted line) gain versus wavelength. The input laser power was
−25 dBm. We can see a reasonable match between simula-
tions and experiments. A slight gap between simulation and
experiment is observed at shorter wavelengths. The peak gain
wavelength was the same in both simulations and experiment.
We also see that the five-stage reservoir model is slightly more
accurate than the single-stage reservoir one.
2) Gain Saturation: Fig. 12 shows both simulated and ex-

perimental fiber-to-fiber gains versus input power at a signal
wavelength of 1560 nm. We see that the simulations reasonably
predict the small-signal gain. A slight discrepancy is observed
when saturation sets in. This is attributed to the fact that the
ratio gk/g

net
k is larger than one in deep saturation since the

denominator tends to zero. In such cases, it is preferable to
include the term gk(r)/gnet

k (r) in the reservoir equation rather

Fig. 12. Fiber to fiber gain versus input optical power. Measured (dashed)
and simulation (solid) results using the single (squares) and five-stage (circles)
reservoir with 20 ASE channels.

Fig. 13. Response to square wave input. Measured (dashed) and simulation
(solid) results using the single (squares) and five-stage (circles) reservoir with
20 ASE channels.

than set it to 1 and play with the fitting parameter τ , as we did
in this paper. Here again, we see that the five-stage reservoir is
closer to the experimental data.
3) Dynamic Response: Fig. 13 shows the simulated (solid

with squared markers) and experimental (dashed) response in
milliwatts to a square-wave input (see inset in Fig. 6). Sim-
ulations include the ASE total detected power, which plays a
fundamental role in the reservoir equation, since it partially
saturates the amplifier, hence reducing the amplifier gain. We
see that the CW levels (zero and one levels) are well predicted
in Fig. 13. This suggests that the approximation that we used
to calculate the ASE power is valid, although the simulated and
experimental output pulses are slightly different. We see that
the pulse’s overshoot and undershoot are better predicted by the
five-stage reservoir model.
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Fig. 14. Fiber to fiber gain versus optical input power. Measured (dashed) and
simulated (solid) results using a three-stage reservoir with single channel ASE.

C. Multistage Reservoir With ASE

Figs. 11–13 show the gain spectrum, gain saturation at
1560 nm, and the output pulse power for the five-stage (solid
with circle markers) reservoir with ASE, respectively. The para-
meters used in the simulations are the same as those considered
in the single-stage reservoir model. Increasing the stage number
beyond five does not increase the accuracy, which might be
attributed to the neglect of ASE that propagates backward
across the stages. In these figures, we see that the dynamic
and steady-state fits are more accurate than those in the single
stage. Particularly, the simulated gain spectrum shape (Fig. 11)
is closer to the experimental one compared with the single-stage
reservoir. Moreover, the overshoot and undershoot of the output
pulse are much closer to the experimental one. However, this
precision comes at the price of simulation speed: The larger the
number of stages, the longer the execution time (see Tables II
and III). An advantage of the multistage model is that it allows
trading execution time for precision, eventually reaching a
comparable precision (and a comparable computational burden)
as the space-resolved Connelly model.

D. Multistage Reservoir With ASE Depleting Channel

In order to fit the experimental results, we arbitrarily fixed
the ASE-depleting-channel wavelength at 1520 nm and then
found the value of its input flux, which gave the minimum mean
square error fit with the prediction of the Connelly model.

As shown in Figs. 14 and 15, the simulation results are
not far from the experimental ones, but they are less accurate
than those in the multichannel ASE case. To investigate the
dynamic response, we cascaded three reservoir stages and
propagated both the signal and the ASE depleting channel.
We note from the figures that simulations fit measurements
in a way comparable to the multistage reservoir with ASE,
which proves the effectiveness of the ASE-depleting-channel
approach. Moreover, the advantage of this approach is the
computation speed. In fact, ASE-depleting-channel simulations

Fig. 15. Response to a square wave input. Measured (dashed) and simulated
(solid) results using a three-stage reservoir with ASE depleting channel.

are twice as fast as those for the multichannel ASE case (see
Tables II and III). The use of more than three stages does not
improve accuracy.

E. WDM Amplification

In order to verify the efficiency of our model for a wider
range of simulation scenarios, we investigated the case of
WDM-signal amplification. We recall that both the Connelly
and the reservoir models are not able to reproduce carrier-
induced nonlinear effects such as FWM and XPM and can
only model the effects of carrier-induced self-gain modulation
and XGM.

Fig. 16 shows the measured power at the output of our Op-
tospeed SOA as well as simulation results using the Connelly
model and (a) a one-stage reservoir model and (b) a three-stage
model, in which the fluorescence τ was set at the value of
360 ps to best match the measurements. The SOA was fed
with four synchronously OOK-modulated WDM signals with
a wavelength spacing of 3 nm (λ1 = 1550 nm, λ2 = 1553 nm,
λ3 = 1556 nm, and λ4 = 1559 nm). The SOA output is
optically filtered so that the ASE is eliminated, and the desired
channel is selected. The optical filter is 1.2 nm wide, so its effect
on the pulse shape is negligible at an experimental bit rate of
1 Gb/s. The average input power of each channel is −20 dBm
(experimentally, lower input power showed noisy pulses).
Under such conditions, we observe a good match between
the measurements and the Connelly model predictions. A
reasonable match is also obtained between the experiment
and the reservoir models. However, we verified that at
lower input powers, the simulations give a less exact fit.
The lack of accuracy during the transients is due to the
linear approximations of the gain and recombination rate.
Note the different slopes of measured and simulated pulses
after the overshoot in Fig. 15. We believe the reason for
this to lie in the linear approximation of R(N) is when the
signal reaches a maximum (and the carrier density reaches
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Fig. 16. Response of four WDM channels (with a spacing of 3 nm) to a square
wave input (see inset showing input optical powers in dBm). (a) Measured
(dashed) and dynamic Connelly model (solid). (b) Measured (dashed), one-
stage reservoir with single channel ASE (solid with squares) and three-stage
reservoir with single channel ASE(solid with circles).

a minimum), the actual time constant of the SOA is larger
than that employed in (9). Moreover, ultrafast phenomena
(neglected in this paper) will have an increasing impact
for overshoots and undershoots on the order of a few
picoseconds.

V. CONCLUSION

A novel state-variable SOA model that is amenable to block
diagram implementation for WDM applications and with fast

execution times was presented and discussed. We called the
novel model the reservoir model, in analogy with similar block-
oriented models for EDFAs and Raman amplifiers. While ASE
self-saturation can be simply included in the EDFA reservoir
model [28], an added complexity in SOAs with respect to
EDFAs is that scattering losses cannot be neglected. This in-
creases the difficulty in developing a reservoir model for SOAs,
and we proposed innovative solutions to tackle the problem.
A critical step in the SOA reservoir model is the appropriate
selection of the values of its wavelength-dependent parameters
that provide a good fit with the experiments. We proposed and
described at length a procedure to extract such parameters from
the parameters of a detailed and accurate space-resolved SOA
model due to Connelly, which we extended to cope with the
time-resolved gain transient analysis. It is important to note
that our reservoir model is not entirely dependent on the space-
resolved simulator. The key wavelength-dependent parameter
for the reservoir model is the material gain as a function of
both wavelength and inversion. A detailed knowledge of this
dependence allows accurate linearization around the working
point and hence, more accuracy for the reservoir model. A
procedure to extract the model parameters directly from the
measurements would be of great practical value.

A number of other issues remain to be explored and deserve
further research. The presence of nonzero facet reflectivity was
not considered and would be important for modeling reflective
SOAs with the reservoir. In addition, a different approximation
for the recombination rate, accounting for a reservoir-dependent
time constant, could increase the reliability of the model. In this
paper, we assumed a linear dependence of this parameter on
the inversion. A better approximation (R(r) = a1(r) + a2r

2 +
a3r

3 + . . .) could be obtained if we assume a constant inversion
N = r/V over the SOA length (as we did for ASE calculations
in Section III-B). However, the accuracy obtained with such
approximations will be at the cost of slower execution time.

The raison d’être of the reservoir model is to find a tradeoff
between accuracy and calculation speed. To achieve this goal,
we considered several variations of the model, with increasing
complexity, which allow the accurate inclusion of both scat-
tering losses and gain saturation induced by ASE. To speed
up the emulation of transmission of long bit sequences in the
reservoir model, we introduced a single equivalent input ASE
channel with appropriate power and gain parameters, which
feeds a noiseless reservoir model to give equivalent dynamics.
We showed that at a comparable accuracy, the reservoir model
with the single ASE channel can be 20 times faster than the
Connelly model in single-channel operation, and much more
significant time savings are expected for WDM operation. The
accuracy of the model is limited to modulation rates per channel
not exceeding 10 Gb/s since ultrafast phenomena such as CH
and SHB are neglected. However, such rates are of interest
for next-generation metropolitan optical networks. In addition,
beating-induced carrier gratings that generate FWM and XPM
in SOAs are not captured by the reservoir model, which then
is reliable whenever XGM dominates over such effects. The
true value of the SOA reservoir model is that together with
block diagram descriptions of EDFA and Raman amplifiers, it
provides a unique tool with reasonably short computation times
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for reliable analysis of gain transients in WDM optical networks
with complex topologies.

APPENDIX

RESERVOIR EQUATION EXTENDED TO

SCATTERING LOSSES

In this Appendix, we take into account the scattering loss
term that was neglected in (13) in the derivation of the reservoir
dynamic (14) in order to assess the approximation that we
introduced. If one assumes the carrier density along the SOA
equals its average value N = r/V (16), then

Qk(z) ∼= Qin
k e

(Γgk(N)−α(N))z

and the term neglected in (13) can be approximated as

L∫
0

α(N)Qkdz ∼= α(N)Qin
k

e(Γgk(N)−α(N))L − 1
Γgk(N) − α(N)

.

Since (Γgk(N) − α(N))L = ak(r − r0k), we obtain the “ex-
tended reservoir equation with scattering losses” as

dr(t)
dt

=
I

q
− r(t)

τ
−

nsig∑
k=1

Qin
k

(
eak(r(t)−r0k) − 1

)

×
(

1 +
α
(

r
V

)
Γgk

(
r
V

)− α
(

r
V

)
)
.

Since we can write

1 +
α(N)

Γgk(N) − α(N)
=

gk(N)
gnet

k (N)

it is now evident that the reservoir (14) is accurate whenever
gnet

k (N) ∼= gk(N). However, this is not always guaranteed to
hold, especially for deeply saturated SOAs, as one can see
for instance in Fig. 7. While in principle one can solve the
preceding extended reservoir equation, in this paper, we found it
easier to solve the standard reservoir (14) and look for the value
of the fluorescence time τ that gave the best fit to both static
and dynamic measurements. In essence, a slightly “decreased”
value of τ has the effect of extra depletion of the reservoir,
which has the same qualitative effect of the extra depletion
caused by the neglected scattering loss term. Although it is clear
that the carrier lifetime has a conceptually different impact on
steady-state and transient responses, we chose, by numerical
optimization, the value of τ that leads to the best fit of the
measured gain spectrum to that predicted by the steady-state
Connelly model. We also show that it is possible to achieve an
accurate estimation of the step response at the same time.
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